

Some Classics of Classification

Nearest neighbors, evaluating prediction methods, naive Bayes

George Chen

CMU 95-865 Spring 2018

Announcements

- HW 2 due next Monday Feb 19, 10:30am instead
 - Please concentrate your mental firepower on prepping for the quiz
 - Lots of questions on material in HW2 not yet covered in lecture (that will be hopefully covered today)
 - No point in releasing HW3 on Wednesday anyways (lecture coverage for HW3 only starts next Monday)
- I will not be holding my regular office hours this week (I'm giving a talk out of town...)

Disclaimer: unfortunately "k" means many things

News Activity for #Barclays

News Activity for #Barclays

GMT Time (June 27, 2012)

News Activity for #Barclays

GMT Time (June 27, 2012)

How we did this: weighted majority voting

Chen, Nikolov, and Shah. A Latent Source Model for Nonparametric Time Series Classification. NIPS 2013.

Weighted Majority Voting

Nearest Neighbor Classification

NN Classification Variants

not the same k as in k-means

- k-NN classification: consider k most similar training data to test data point
 - Weighted: when tallying up votes, use the similarities that we computed
 - Unweighted: when tallying up votes, have each of the k nearest neighbors have an equal vote of 1 (terminology: "k-NN classification" by default is unweighted)
- Fixed-radius near neighbor classification: consider all training data at least some similarity threshold close to test data point (i.e., use all training data distance ≤ h away)
 - Once again, can use weighted or unweighted votes

What should the label of this new point be?

1-NN classifier prediction

What should the label of this new point be?

What happens if k = n?

How do we choose k?

What I'll describe next can be used to select hyperparameter(s) for any prediction method

First: How do we assess how good a prediction method is?

Hyperparameters vs. Parameters

- We fit a model's parameter to training data (terminology: we "learn" the parameters)
- We pick values of hyperparameters and they do not get fit to training data
- Example: Gaussian mixture model
 - Hyperparameter: number of clusters *k*
 - Parameters: cluster probabilities, means, covariances
- Example: *k*-NN classification
 - Hyperparameter: number of nearest neighbors *k*
 - Parameters: N/A

Example: Each data point is an email and we know whether it is spam/ham

Example: future emails to classify as spam/ham

Predicted labels

Training	Training	Training	Training	Training
data	data	data	data	data
point	point	point	point	point
Training	Training	Training	Training	Training
data	data	data	data	data
point	point	point	point	point

Train method on data in gray

Predict on data in orange

Compute prediction error

50%

Training	Training	Training	Training	Training
data	data	data	data	data
point	point	point	point	point
Training	Training	Training	Training	Training
data	data	data	data	data
point	point	point	point	point

Train method on data in gray

Predict on data in orange

Compute prediction error

0% 50%

Training	Training	Training	Training	Training
data	data	data	data	data
point	point	point	point	point
Training	Training	Training	Training	Training
data	data	data	data	data
point	point	point	point	point

Train method on data in gray

Predict on data in orange

Compute prediction error

50% 0% 50%

Training	Training	Training	Training	Training
data	data	data	data	data
point	point	point	point	point
Training	Training	Training	Training	Training
data	data	data	data	data
point	point	point	point	point

Train method on data in grayPredict on data in orangeComputeCompute0%50%0%50%

Training	Training	Training	Training	Training
data	data	data	data	data
point	point	point	point	point
Training	Training	Training	Training	Training
data	data	data	data	data
point	point	point	point	point

Train method on data in grayPredict on data
in orangeCompute
prediction errorCompute
prediction error0%0%50%Average error: (0+0+50+0+50)/5 = 20%

Training	Training	Training	Training	Training
data	data	data	data	data
point	point	point	point	point
Training	Training	Training	Training	Training
data	data	data	data	data
point	point	point	point	point

- 1. Shuffle data and put them into "folds" (5 folds in this example)
- 2. For each fold:

(a) Predict on the fold using model trained on all other folds(b) Compute prediction error

3. Compute average prediction error across the folds

not the same *k* as in *k*-means or *k*-NN classification *k*-fold Cross Validation

- 1. Shuffle data and put them into "folds" (k=5 folds in this example)
- 2. For each fold:

(a) Predict on the fold using model trained on all other folds(b) Compute prediction error

3. Compute average prediction error across the folds

not the same *k* as in *k*-means or *k*-NN classification *k*-fold Cross Validation

- 1. Shuffle data and put them into "folds" (k=5 folds in this example)
- 2. For each fold:

(a) Predict on the fold using model trained on all other folds(b) Compute **some sort of prediction score**

3. Compute **average prediction score** across the folds "cross validation score"

Choosing k in k-NN Classification

Note: *k*-NN classifier has a single parameter *k*

For each k = 1, 2, 3, ..., the maximum k you are willing to try:

Compute 5-fold cross validation score using *k*-NN classifier as prediction method

Use whichever k has the best cross validation score

Automatic Hyperparameter Selection

Suppose the prediction algorithm you're using has hyperparameters $\boldsymbol{\theta}$

For each hyperparameter setting θ you are willing to try:

Compute 5-fold cross validation score using your algorithm with hyperparameters θ

Use whichever θ has the best cross validation score Why 5?

People have found using 10 folds or 5 folds to work well in practice but it's just empirical — there's no deep reason

Training data

Training data

Training data

Important: the cross validation score is trying to predict what the prediction quality will be on the unseen test data

Our earlie<mark>r example</mark> had a cross validation score of 20% error

This is a guess at how well the prediction method should perform on test data

This guess is <u>not</u> always accurate

Example: Each data point is an email and we know whether it is spam/ham

Different Ways to Measure Accuracy

Simplest way:

 Raw error rate: fraction of predicted labels that are wrong (this was in our cross validation example earlier)

In "binary" classification (there are 2 labels such as spam/ham) when 1 label is considered "positive" and the other "negative":

- Precision: among data points predicted to be "positive", what fraction of these predictions is correct?
- **Recall:** among data points that are actually "positive", what fraction of these points is predicted correctly as "positive"? (also called **true positive rate**)
- **F1 score:** 2 × precision × recall

precision + recall

Naive Bayes

(a generative model)

Email spam classification example

Many other ways to specify a naive Bayes model (features need not be binary)

Each email represented by feature vector saying whether a word is present or not (for pre-specified dictionary of words)

- Flip coin with unknown probability s: If heads: new email is spam If tails: new email is ham
 No effect on whether another
 No effect on whether another
- 2. If new email is spam: word appears! For each word w in vocabulary: (why model is called "naive") Flip coin with probability p_w for whether word w appears

If new email is ham:

For each word *w* in vocabulary:

Flip coin with probability q_w for whether word w appears

How many parameters are there in this example?